• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@ÖHÜ
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınlar
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
  •   DSpace@ÖHÜ
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınlar
  • Öksüz Yayınlar Koleksiyonu - WoS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A review on micro-level modeling of solid oxide fuel cells

Access

info:eu-repo/semantics/closedAccess

Date

2016

Author

Timurkutluk, Bora
Mat, Mahmut D.

Metadata

Show full item record

Abstract

Solid oxide fuel cells (SOFCs) are ceramic based electrochemical devices operating at high temperatures and generates electricity and useful heat energy utilizing various fuels at a high efficiency. The main structure of the cell comprises a dense electrolyte coated with two porous anode and cathode electrodes. The electrolyte is responsible for the transfer of oxide ion while the electrochemical reactions take place in the electrodes. The cell performance is limited by the number of reaction zones known as triple/three phase boundaries (TPBs). Therefore, the electrodes play a crucial role in achieving high power as well as long service life. When the requirements that SOFC electrodes should meet are considered, the most successful electrode materials seem to be composite ones, including ionic and electronic conductive phases with pores for the gas transport. However, this combination is not enough alone since the contiguous contact of these three phases within the electrodes is also necessary to obtain electrochemically active reaction zones. The number of these areas can be a useful metric for predicting the cell performance or provide a relationship between the performance and microstructure. The determination of the electrochemical reaction zones at the micro-scale and the microstructural parameters influencing their density are required to link the microstructure to the performance. Therefore, in this paper, micro-modeling studies of SOFC electrodes through advanced microstructural characterization are reviewed. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Source

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Volume

41

Issue

23

URI

https://dx.doi.org/10.1016/j.ijhydene.2016.02.089
https://hdl.handle.net/11480/3628

Collections

  • Makale Koleksiyonu [2055]
  • Öksüz Yayınlar Koleksiyonu - Scopus [2338]
  • Öksüz Yayınlar Koleksiyonu - WoS [2361]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@ÖHÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Niğde Ömer Halisdemir University || OAI-PMH ||

Ömer Halisdemir Üniversitesi Sabiha Şahenk Kütüphane ve Dokümantasyon Daire Başkanlığı, Niğde, Turkey
If you find any errors in content please report us

Creative Commons License
DSpace@ÖHÜ by Niğde Ömer Halisdemir University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@ÖHÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.